

9-20 FEBRUARY 2024 | KUALA LUMPUR CONVENTION CENTRE

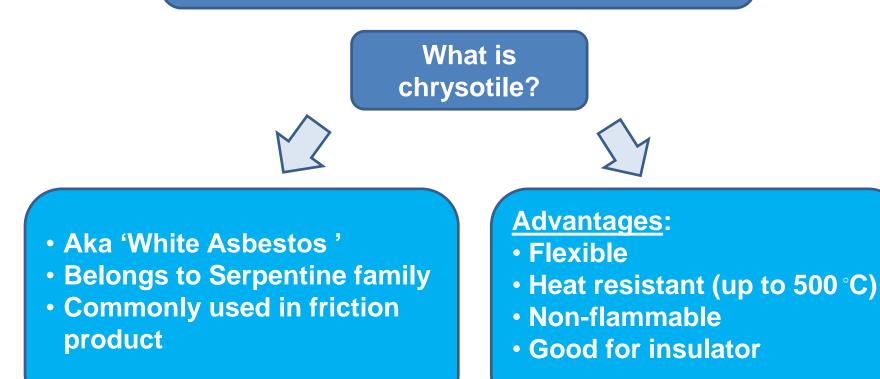
Protecting the future by reconstructing past exposure history: A case study of occupational lifetime chrysotile exposure and lung cancer risk among mechanics

Muhammad Zubir Yusof, ^{1, 2}, Maryam Zahaba, ^{1, 3}, Mohd Shukri Mohd Aris, ^{1, 4}, Saiful Arifin Shafiee, ^{3, 5}, Hazrin Abdul Hadi, ⁵, Mohd Norhafsam Maghpor, ¹, Nor Mohd Razif Noraini, ¹

¹National Institute of Occupational Safety and Health, Malaysia.
 ²Department of Community Medicine, Kulliyyah of Medicine, International Islamic University Malaysia.
 ³Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia.
 ⁴Centre of Environmental Health & Safety, Faculty of Health Science, Universiti Teknologi MARA.
 ⁵IIUM Health, Safety and Environment (IHSEN), Kulliyyah of Medicine, International Islamic University Malaysia.

cosh.niosh.com.my

OUTLINE

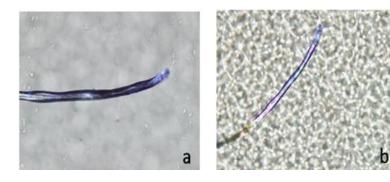

- Study background
- Importance of exposure assessment
- Role of exposure modelling
- Estimating occupational lifetime chrysotile exposure
- Predicting lung cancer risk

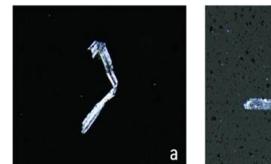
25% - 65% chrysotile can be found in brake pad, brake lining, gasket and clutch lining^{1, 2}

Mechanics in auto repair workshop are at higher risk to asbestos exposure and asbestos-related diseases⁴

Higher incidence of lung cancer and mesothelioma among these workers compared to the general population⁵

³Gilles, T. 2005, Thomson Delmar Learning, A Division of Thomson Learning, Inc, USA. ⁴Finkelsten, M.M., 2008, *Annals of occupational hygiene*, *5*2(6), 455-461 ⁵Langer AM, McCaughey WTE. 1982. *Lancet* 8307, 1101-103.


Chrysotile fibre detection using PLM


Our previous article: Zahaba, M. et al. (2023) Identification of chrysotile in brake pads and linings from Malaysian vehicles and heavy vehicles by using Polarized Light Microscope (PLM). Jurnal Teknologi, 85 (3). pp. 125-134. ISSN 0127-9696 E-ISSN 2180-3722

Extinction Angle

Dispersion Staining using a darkfield view technique

The sign of the elongation using first order compensator

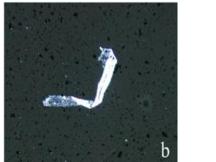


Figure 1 (a) Aligned parallel to 0° angle polariser

(b) Aligned at 45° orientation to the polariser

Figure 2 (a) sample rotated at 45° angle (b) sample rotated at 0° angle Figure 3

(a & b) showed blue colour fibres at the NE-SW orientation. Meanwhile, (a) the fibres present at the NW-SE orientation appeared in yellow form.

Chrysotile fibre detection using PLM

(a)

Anisotropic Characteristic of Chrysotile fibre

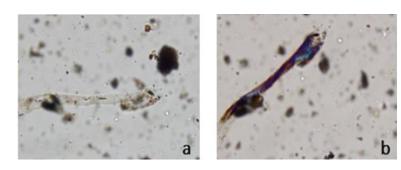



Figure 4 (a) Fibre was aligned at parallel orientation (b) Fibre was aligned at 45° orientation

COSH 24 Market States of Contract of Contr

Colour and morphology

Figure 5

- (a) A fibre was aligned at parallel orientation,
- (b) A fibre was aligned at parallel orientation
- (c) A fibre was aligned at 45° orientation. Fully crossed polarisation image of chrysotile detected under RI 1.550 using 20X magnification
- (d) A fibre in the darkfield view

Pleochroism

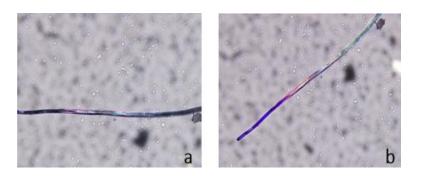
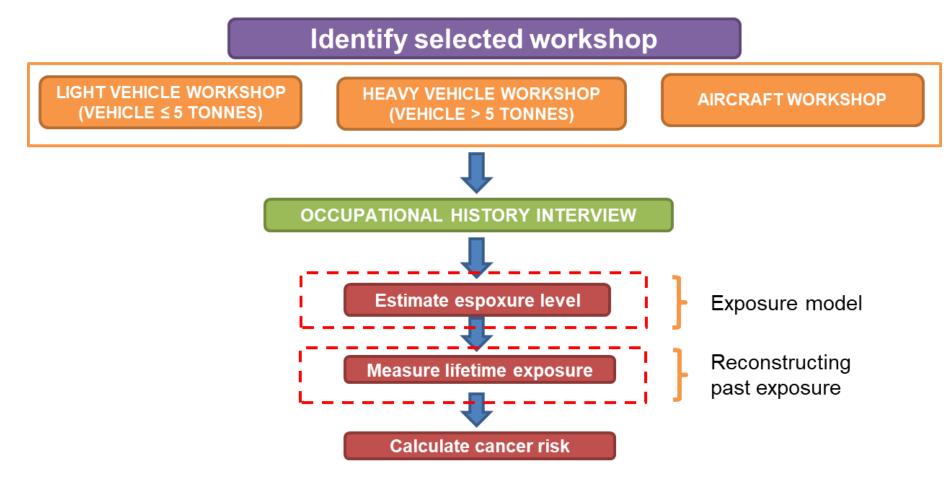


Figure 6 Aligned parallel to 0° angle polariser

(b) Aligned at 45° orientation to the polariser


A CASE STUDY: OCCUPATIONAL LIFETIME CHRYSOTILE EXPOSURE & LUNG CANCER RISK AMONG MECHANICS

- · Aims:
 - To estimate chrysotile inhalation exposure level for each job tasks
 - To estimate lifetime chrysotile occupational exposure of the workers
 - To calculate lung cancer risk

METHODOLOGY

EXPOSURE ASSESSMENT METHOD

Direct method

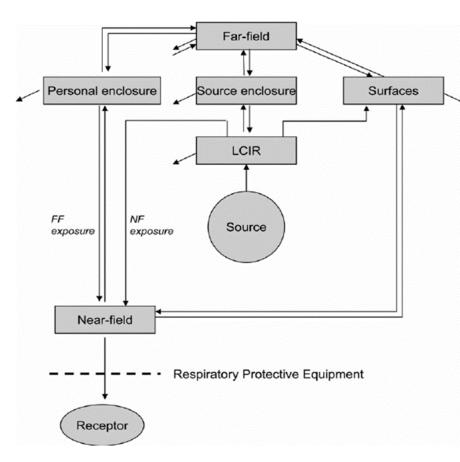
Air sampling – area or personal

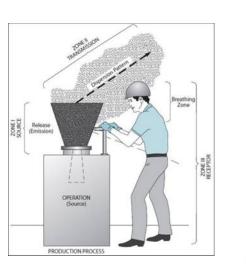
- Expensive
- Labour extensive
- Snap-shot of exposure

Indirect method

Exposure modelling / Control Banding

- Absence of measured data
- Predict exposure / control
- Act as compliment to measured data





EXPOSURE MODELLING

Can be used in epidemiological research & regulatory risk assessment

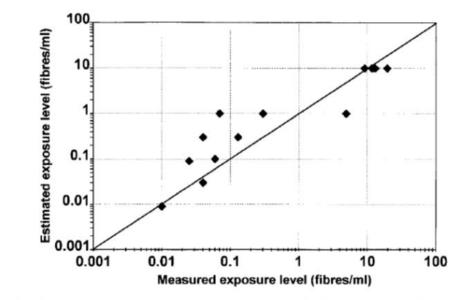
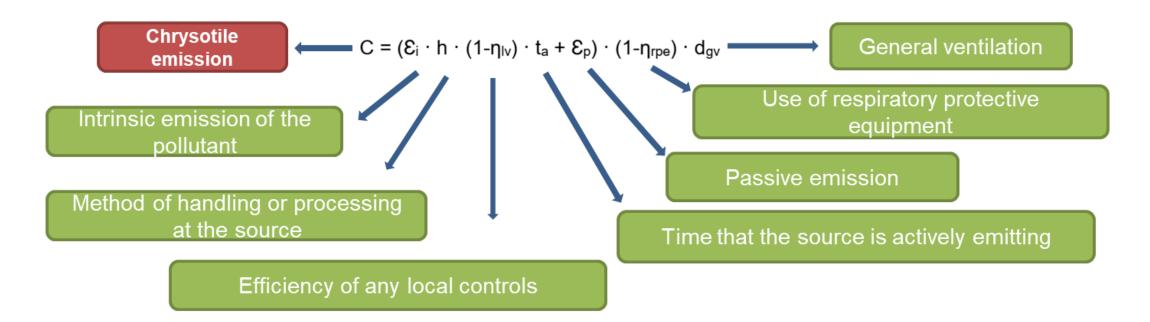


Fig. 5. Comparison of measured and estimated exposure levels for asbestos (Assessor 1).

(correlation coefficient 0.93)

Validated in number of various situation


Based on source-receptor modelling approach

⁶Tielemans, E., Schneider, T., Goede, H., Tischer, M., Warren, N., Kromhout, H., ... & Cherrie, J. W. (2008). Conceptual model for assessment of inhalation exposure: defining modifying factors. *Annals of occupational hygiene*, *52*(7), 577-586. ⁷Cherrie, J. W., & Schneider, T. (1999). Validation of a new method for structured subjective assessment of past concentrations. Annals of occupational hygiene, *43*(4), 235-245.

MODEL PARAMETERS

- The intrinsic and passive emissions in fibres/ml
- The other parameters in these equations are dimensionless
- All parameters are assumed to be independent of each other
- They are combined in a multiplicative form to estimate the exposure level.
- Except, the passive emission term (act as an additive factor unrelated to the active source).

MODEL PARAMETERS GUIDANCE

- To reconstruct exposure levels, the assessor must assign numeric values to each of the parameters.
- Selection of these parameters should be based on descriptive information for the process and work activities
 - may need to use their judgement, e.g. when details about the duration of the dust generating activity are unavailable or the task description is unclear.
- To aid consistency while coding exposure level it is recommend that assessors are trained and use the chrysotile-specific guidance
- Exposures can be independently reconstructed by two or three assessors if there is a need for greater reliability, but there is little value in having more than three independent assessments

MODEL PARAMETERS GUIDANCE

Table 1: Guidance materials for asbestos inhalation exposure modelling

6" SCIENTIFIC CONFERENCE ON OCCUPATIONAL SAFETY AND HEALTH

SCI

	Definition	Value	Unit
E;	 Aircraft and truck (16 -23%) 	1.5	f/ml
C 1	 Automobiles such as car; and train (40 – 70%) 	2.25	f/ml
	Machining		
	 Bevelling new or used brake linings/pads 	10	Dimensionless
	 Grinding new or used brake linings/pads 	10	Dimensionless
	 Grinding brake linings/pads on wheels 	10	Dimensionless
	 Sanding brake linings/pads 	10	Dimensionless
	 Rivet installation 	1	Dimensionless
	 Rivet removal 	1	Dimensionless
	 Preparation of brake shoes before riveting new linings 	0.3	Dimensionless
h	 Turning brake drums / brake discs 	0.3	Dimensionless
	 Opening / changing / assembly / disassembly of drum brakes/discs 	0.3	Dimensionless
	 Bevelling new or used brake linings/pads 	0.3	Dimensionless
	<u>Cleaning</u> • Cleaning discs/drum brake assembly with	10	Dimensionless
	compressed air / water*	10	
	 Cleaning discs/drum brake assembly with compressed air /brush/ dry clot/ vacuum* 	3	Dimensionless
	*cleaning using solvent, vacuum or water are treated in the local control section.		
	No local control	1	Dimensionless
		1	Dimensionless
	No local control Local ventilation (i.e. LEV) • Well-designed and maintained captor ventilation	1	
	Local ventilation (i.e. LEV) Well-designed and maintained captor 	-	Dimensionless
	 <u>Local ventilation (i.e. LEV)</u> Well-designed and maintained captor ventilation Less carefully designed or maintained captor hoods <u>Enclosure</u> 	0.1	Dimensionless Dimensionless
1-ціл	 <u>Local ventilation (i.e. LEV)</u> Well-designed and maintained captor ventilation Less carefully designed or maintained captor hoods 	0.1	Dimensionless Dimensionless
1-ŋ _{iv}	 <u>Local ventilation (i.e. LEV)</u> Well-designed and maintained captor ventilation Less carefully designed or maintained captor hoods <u>Enclosure</u> Partial enclosure (i.e. fume cupboard) without 	0.1	Dimensionless Dimensionless Dimensionless Dimensionless
1-ŋ _{iv}	 <u>Local ventilation (i.e. LEV)</u> Well-designed and maintained captor ventilation Less carefully designed or maintained captor hoods <u>Enclosure</u> Partial enclosure (i.e. fume cupboard) without air ventilation 	0.1 0.3 0.05	Dimensionless Dimensionless Dimensionless Dimensionless
1-ŋы	 <u>Local ventilation (i.e. LEV)</u> Well-designed and maintained captor ventilation Less carefully designed or maintained captor hoods <u>Enclosure</u> Partial enclosure (i.e. fume cupboard) without air ventilation Partial enclosure with air ventilation 	0.1 0.3 0.05 0.01	Dimensionless Dimensionless Dimensionless
1-ŋ _{iv}	 Local ventilation (i.e. LEV) Well-designed and maintained captor ventilation Less carefully designed or maintained captor hoods Enclosure Partial enclosure (i.e. fume cupboard) without air ventilation Partial enclosure with air ventilation Total enclosure 	0.1 0.3 0.05 0.01	Dimensionless Dimensionless Dimensionless Dimensionless

	Good housekeeping	0	f/ml
8 _p	Poor housekeeping (but the situation is generally controlled)	0.1	f/ml
	Very poor housekeeping (i.e. very dusty)	0.3	f/ml
dgv	The general ventilation parameter can be determined by using the information on room volume and air changes per hour	Please refer #	Dimensionles
	volume and an enanges per nour		
	No RPE use	1	Dimensionles
1 -		1 0.5	Dimensionles Dimensionles
1 - ŋ _{rpe}	No RPE use	1 0.5 0.3	

 $\epsilon_i = \text{Intrinsic emission (f/ml)}; h = \text{Handling}; 1-\eta_{lv} = \text{Local control}; t_a = \text{the time that the}$ source is actively emitting (%); Ep = passive emission (f/ml); dgv = General ventilation; 1 nrpe = Respiratory Protective Equipment;

#Guidance value for general ventilation¹

Room volume	0.3 air changes per hour	l air changes per hour	3 air changes per hour	10 air changes per hour
30 m ³	37	18	7	3
100 m ³	13	6	2.9	1.6
300 m ³	5.1	2.7	1.6	1.2
1000 m ³	2.2	1.5	1.2	1
3000 m^{3}	1.4	1.2	1.1	0.5
Far Field M	fultipliers			
30 m ³	37	17	6	2
100 m ³	12	5	2	0.6
300 m ³	4.1	1.7	0.6	0.2
1000 m ³	1.2	0.5	0.2	0.07
3000 m ³	0.4	0.2	0.1	0.05

Note:

Near-field: a volume around the worker whose exposure is being investigated

Far-field: the remainder of the work environment.

¹Cherrie et al (2011). Annals of occupational hygiene, 55(9), 1006-1015.

FINDINGS & DISCUSSION

AUTOMOBILE WORKSHOP

TRUCK WORKSHOP

AIRCRAFT WORKSHOP

Type of workshop	Automobile	Truck	Aircraft		
Number of workers	10	18	10		
Chrysotile-related task duration	5 minutes/shift	25 minutes/shift	6.25 hours/shift		
Number of chrysotile-related tasks	2	5	3		
Housekeeping	Poor housekeeping (but the situation is generally controlled)	Poor housekeeping (but the situation is generally controlled)	Poor housekeeping (but the situation is generally controlled)		
Ventilation	No adequate	Not adequate	Not adequate		
Estimated room volume	3000 m ³ (3 ACH)	3000 m ³ (10 ACH)	3000 m ³ (0.3 ACH)		
RPEs program	Limited RPE use	Limited RPE use	Improved RPE use		

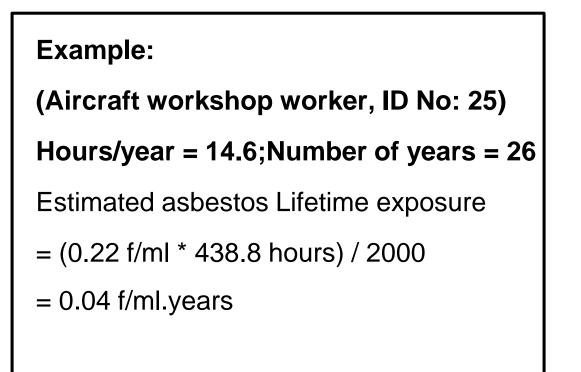
SCIC&SH 6" SCIENTIFIC CONFERENCE ON OCCUPATIONAL SAFETY AND HEALTH

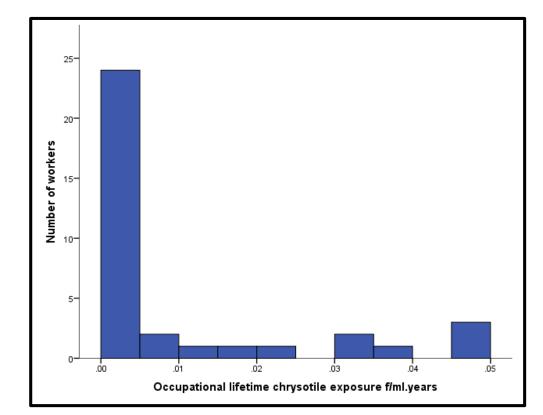
Estimated chrysotile emissions

Workshop	Та	ask	Ei	h	$1-\eta_{lv}$	ta	Ep	1-ŋ <i>rpe</i>	d_{gv}	С
Automobile	1	Opening / changing / assembly brake linings / pad / disc	2.25	0.3	1	0.01	0.1	0.5	1.1	0.06
	2	Cleaning brake disc / drum with compressed air	2.25	10	0.3	0.01	0.1	0.5	1.1	0.09
			Total exposure (f/ml):					0.15		
Truck	1	Rivet removal	1.5	1	1	0.01	0.1	0.5	0.5	0.03
	2	Preparation of Brake Shoes before riveting new linings	1.5	0.3	1	0.01	0.1	0.5	0.5	0.03
	3	Rivet installation	1.5	1	1	0.01	0.1	0.5	0.5	0.03
	4	Opening / changing / assembly brake linings / pad / disc	1.5	0.3	1	0.01	0.1	0.5	0.5	0.03
	5	Cleaning brake disc / drum with compressed air	1.5	10	0.3	0.01	0.1	0.5	0.5	0.04
			Total exposure (f/ml):					0.16		
Aircraft	1	Disassembly of carbon brake	1.5	0.3	1	0.375	0.1	0.3	1.1	0.09
	2	Assembly of carbon brake	1.5	0.3	1	0.375	0.1	0.3	1.1	0.09
	3	Cleaning carbon brake assembly with dry cloth / brush	1.5	3	0.1	0.03	0.1	0.3	1.1	0.04
			Total exposure (f/ml):						0.22	

Note:

 \mathcal{E}_i = Intrinsic emission (f/ml); h = Handling; 1- η_{iv} = Local control; t_a = the time that the source is actively emitting (%); \mathcal{E}_p = passive emission (f/ml); d_{gv} = General ventilation; 1 - η_{rpe} = Respiratory Protective Equipment; C = Total exposure (f/ml)

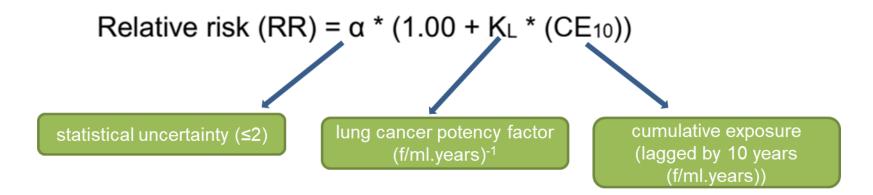



OCCUPATIONAL LIFETIME CHRYSOTILE EXPOSURE

Occupational lifetime chrysotile exposure

= (Estimated chrysotile exposure level * total occupational exposure period (hours/year x number of years))/2000#

*based on "occupational" years (40hrs x 48 weeks ~ 2000hrs)



Estimated occupational lifetime chrysotile exposure among mechanics

0.0001 - 0.0486 f/ml.years, median (IQR) = 0.0018 (0.009) 17

LUNG CANCER RISK

Due to long latency of lung cancer, the mortality rate can be estimated by 10 years lagged of exposure

Example:

```
RR = 1 * (1 * 0.0061 (f/ml.years)<sup>-1</sup> * 0.005 f/ml.years = 1.00003
```

It appears that the additional contribution of exposure to lung cancer risk in our study is low (0.00003%).

LIMITATION

- Small sample size among exposed workers, but:
 - recruited from 3 different categories of workshops (represent the different chrysotile-related tasks)
 - minimize the exposure misclassification bias (extensive occupational history interview)
- Subjective exposure model might overestimate the exposure compared to the measured exposure, but it is common.
 - Overestimate: costly or unnecessary control action
 - Underestimate: jeopardize the workers' health

CONCLUSION

- □ Exposure modelling can be used to reconstruct past exposure.
- □ A task-based approach can estimate lifetime occupational chrysotile exposure in the absence of
 - historical sampling data.
- □ The cancer risk in mechanics is low, most likely due to lower cumulative exposure of the workers.

ACKNOWLEDGEMENT

NO. TENDER: NIOSH/NO.SH.32/2019-CRD

ALL RESPONDENTS FROM EACH WORKSHOP

24^{mag} Market And Andrewson Andrews

THANK YOU