





# Physicochemical Evaluation of Carbonbased Nanomaterial Exposure from Carbon Fiber Processing Laboratory

Mat Tamizi Zainuddin, Sudirman Sahid, Mohammad Azmirruddin Ahmad, Nurazilah Mohd Zainon, Hairul Anuar Tajuddin, Sharulnizam Jamen



# ChM. Mat Tamizi Zainuddin

Industrial Centre of Innovation in Biomedical SIRIM Industrial Research SIRIM Berhad, Kulim Hi-Tech Park

cosh.niosh.com.my



| 01 | Introduction and Motivation                        |
|----|----------------------------------------------------|
| 02 | Scope : material, location, experimented subject   |
| 03 | Sampling – air sampling & dermal simulation        |
| 04 | Physicochemical assessment – microscopy & chemical |
| 05 | Risk assessment & Control Measures                 |
| 06 | Conclusion                                         |



# **Introduction & Motivation**





#### **European Commission**

Particle size of at least half of the particle in the number size distribution - 100 nm or below

#### **Can occurred**

- Naturally
- Be created purposely
- As by product







# However the same properties that make nanomaterials scientifically and commercially exploitable

# ...are also the basis of possible health effects especially on by-product – risk of occupational





# NIH National Library of Medicine

Research

Environmental Health Perspectives • VOLUME 118 | NUMBER 4 | April 2010

### Case Report: Lung Disease in World Trade Center Responders Exposed to Dust and Smoke: Carbon Nanotubes Found in the Lungs of World Trade Center Patients and Dust Samples

Maoxin Wu,<sup>1</sup> Ronald E. Gordon,<sup>1</sup> Robin Herbert,<sup>2</sup> Maria Padilla,<sup>3</sup> Jacqueline Moline,<sup>2</sup> David Mendelson,<sup>4</sup> Virginia Litle,<sup>5\*</sup> William D. Travis,<sup>6</sup> and Joan Gil<sup>1</sup>



Honeycomb fibrosis with cyst remodeling of lung parenchyma

Chronic bronchiolitis : inflammation in submucosa of respiratory epithelium Granuloma in interstitium

# **Testing Location**









19 – 20 Feb 2024

SCIC

Carbon Fiber Laboratory Advanced Materials Research Centre SIRIM Berhad Kulim HiTech Park Kedah

Schematic layout of Carbon Fiber Pilot Plant in SIRIM Kulim

# **Testing Location**







# **Material preparation**

Spin dope preparation

**PAN Spinning Process** 



Spinning







**Stabilisation & Carbonisation Process** 



**Surface Treatment** 

& Sizing

**Converting PAN fiber to carbon fiber** 



Spooling



# **Scopes of Nanomaterials**







**Carbon matt** 



b)

**Possible carbonaceous** nanomaterial exposure





Sampling





NIOSH : CDC Sampling on nanomaterials

19 – 20 Feb 2024

SCI

Transport shall be through personnel breathable tract

# Sampling



## Personnel breathable air sampling



# Dermal deposited sampling





Points of sample collection

SiO2-Al2O3 membrane plate





Nanomaterial Characterizations

| Microscopy | <br>CLSM | SEM     | <br>TEM | $\rightarrow$ | AFM |
|------------|----------|---------|---------|---------------|-----|
| Chemistry  | FTIR     | <br>XRD | EDS     |               |     |
| Physical   | <br>DLS  | <br>BET |         |               |     |









**Microscopy** 









Magnification 400x

19 – 20 Feb 2024 'ЭН

# **Preliminary Inspection**





Magnification 400x









Line profile analysis









Particle Characterizations by Microscopic Techniques





SCI

19 – 20 Feb 2024

Microscopic Analysis by SEM on Morphology and Uniformity







#### Microscopic Analysis by SEM – Size in Length



5000 x, chest position

19 – 20 Feb 2024

SCIC

5000 x, chest position

#### Size in length = 2 to 10 micron



#### Microscopic Analysis by SEM – Size in Diameter



#### 10000 x, chest position

19 – 20 Feb 2024

SCI

5000 x, chest position

#### Size in diameter = 80 to 250 nm

# **Physicochemical Evaluation**

#### Scanning Electron Microscopy



#### Number of particle = 100











# **Physicochemical Evaluation**



#### Scanning Electron Microscopy



| Morphology Description | Particle Size                                                          | Particle Shape                   |  |  |
|------------------------|------------------------------------------------------------------------|----------------------------------|--|--|
| Fibrillar (sharp tube) | Size in diameter is 80 to 250 nm<br>Size in length is 2.5 to 20 micron | Aspect ratio is between 30 to 80 |  |  |







Curled-up. Non-aggregates but may agglomerates

19 – 20 Feb 2024

SCI

Parallel overlapping. Non-aggregation

Magnification : 145 KX

- Multiwall carbon nanotube
- Diameter 80 nm
- Between plane 5nm •





SCIC SH | 19 – 20 Feb 2024





#### Chemical analysis for carbonaceous identification



FTIR spectrum of nanoparticle collected at thermal treatment area



# Point of FTIR measurement on deposited filter



19 – 20 Feb 2024



Type of vibration

Bending

carboxylic, anhydrides)



FTIR spectrum of nanoparticle collected at specific areas of Carbon Fiber Laboratory

19 - 20 Feb 2024

The spectra and functional groups indicated that the carbon are

- Within C=C due to presence of hybridization of sp<sup>2</sup> ٠
- Having out of plane C-H, possible a wrap-up graphite structures







 $2\theta \text{ at } 25.9^{\circ}$   $2\theta \text{ at } 42.5^{\circ}$   $\frac{2\theta \text{ at } 25.9^{\circ}}{2002}$   $\frac{101}{900}$   $\frac{101}{900}$   $\frac{100}{900}$   $\frac{100}{900}$  $\frac{$ 

XRD diffraction spectra of sampled deposited nanomaterial

XRD patterns for CNTs are characterize by;

- Graphite-like peak at diffraction plane of <002> and <101>
- A sharp peak at diffraction 2θ angle of 25.7°
- A broad reflection peak at diffraction angle of 42.9°

The diffraction peaks at  $2\theta$  of  $25.9^{\circ}$  and  $42.5^{\circ}$  confirming that the carbon allotropes crystal are in cylindrical form – CNTs and/or CNFs







# **Physicochemical : Physical : Dynamic Light Scattering**

19 – 20 Feb 2024





# **Physicochemical : Physical : BET**





**Physical** 

Brunauer-Emmett-Teller Analyser



BET

**BET Surface Area Plot** 

Surface Area

DLS

Single point surface area at  $p/p^{\circ} = 0.318896531$ : 40.6431 m<sup>2</sup>/g

BET Surface Area: 39.6991 m<sup>2</sup>/g

Langmuir Surface Area: 75.2835 m<sup>2</sup>/g



#### Langmuir Surface Area Plot

#### **Pore Size**

Adsorption average pore diameter (4V/A by BET): 0.70520 nm Desorption average pore diameter (4V/A by BET): 13.29948 nm BJH Adsorption average pore width (4V/A): 5.1660 nm BJH Desorption average pore width (4V/A): 5.0752 nm





#### **IDENTIFY GROUP**



Fullerene



Graphene





Carbon nanofiber

(CNFs)

Carbon nanotubes

(CNTs)

From study on the manufacturing process, raw material in use and final desired product outcomes, exposure on carbonaceous nanoparticle shall be possibly comes from three main allotropes;

- **Fullerene**
- Carbon nanotubes (CNTs)
- Carbon nanofiber (CNFs) ٠

However based on finding from sampling, only 2 allotropes present;

- **CNTs**
- **CNFs**





From Physicochemical Characterization & Analysis



CLSM TEM SEM AFM

19 – 20 Feb 2024

Size in diameter is 80 to 250 nm Size in length is 2.5 to 20 micron Aspect ratio is between 30 to 80

| FTIR | collected carbonaceous compound having high |
|------|---------------------------------------------|
|      | C=C in composition with sp2 hybridization   |

**XRD** having crystal structure quite similar to CNTs

EDS Mainly consist of C and O

**DLS** Sedimentation and agglomeration restricted measurement

BET Surface area of 75.2 m<sup>2</sup>/g (Langmuir) Small pore size of 5.1 nm (BJH calculation) Confirming that the collected carbon allotropes can be categorized into CNTs (by diameter) and CNFs (by diameter length)



#### **Questionnaire & Walkthrough**

All CF Fabrication Process



#### Interview & Walkthrough

| Tier I   | Elim                | ination        | М            | Most preferred |          |  |
|----------|---------------------|----------------|--------------|----------------|----------|--|
| Tier II  | Engineering Control |                |              |                |          |  |
| Tier III | Workplace Control   | Administrat    | tive Control |                |          |  |
| Tier IV  | Personnel Prot      | ective Equipme | ent Lea      | ast prefer     | ,<br>red |  |



Guidelines on Control and Safe Handling of Nanomaterials 2018

Department of Occupational Safety & Health











- Ventilation eliminate congestion
- Detector for hazardous gases



19 – 20 Feb 2024

SCIC

ЭП



Fan and exhaust fan





Gas detector for HCN





SCIC SH | 19 – 20 Feb 2024











Tier III Workplace Control & Administration Control





- Scheduled work place inspection, waste management
- Routine inspection on critical equipment and process



- Sampling on exposure of carbonaceous nanomaterial regarding to occupational safety and health has been performed within Carbon Fiber Fabrication and Processing Laboratory
- Physicochemical on the basis of microscopy, chemical analysis and physical properties has been executed toward definition of the physicochemical exposure
- Data on particle size, shape, agglomeration properties, chemical identification and carbonaceous hybridization has been successfully define
- Control measures on the exposed nanomaterial has been executed where particular measures have been carried out toward exposure control



# **Quest for Fantastic Integration of UN SDGs in ESG**









#### Learn : Re-Learn : Co-Learn

19 – 20 Feb 2024



# Acknowledgement





Project Title : Physicochemical Exposure Assessment on Carbon Fiber for Nanomaterial Processing Laboratory



support of the **National Institute of Occupational Safety and Health (NIOSH)** grant [(03.16/03/ PHYSICOCHEMICAL(E)2021/01)











Best Partner for Innovation



Tamizi Zainuddin tamizi@sirim.my