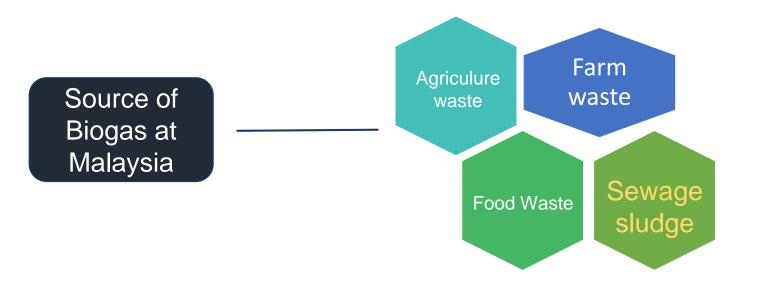


19-20 FEBRUARY 2024 | KUALA LUMPUR CONVENTION CENTRE

Hazard Identification and Risk Assessment of Biogas Plant with Proton Exchange Membrane Fuel Cell Technology

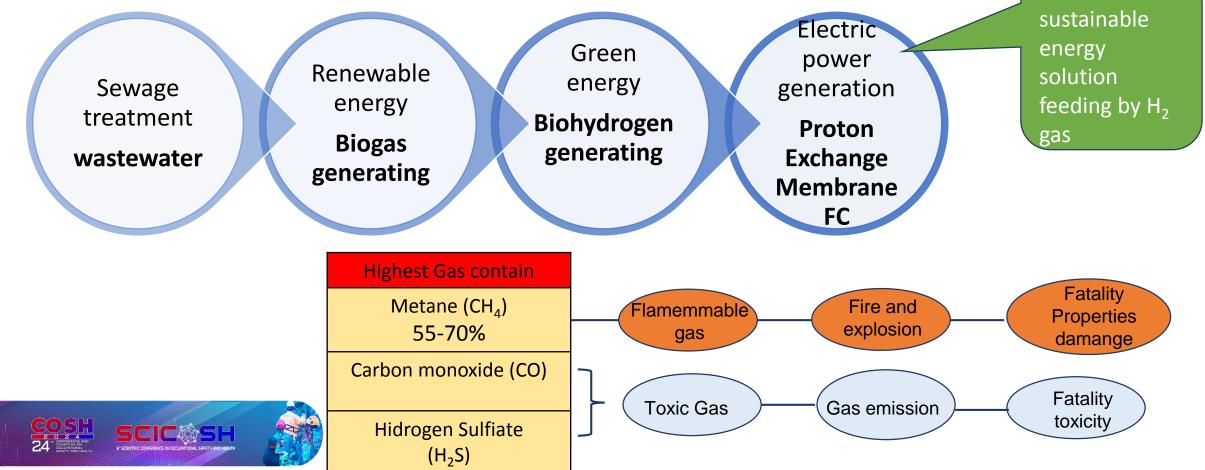

IZAN SHUKRIZAL SHUKOR

cosh.niosh.com.my

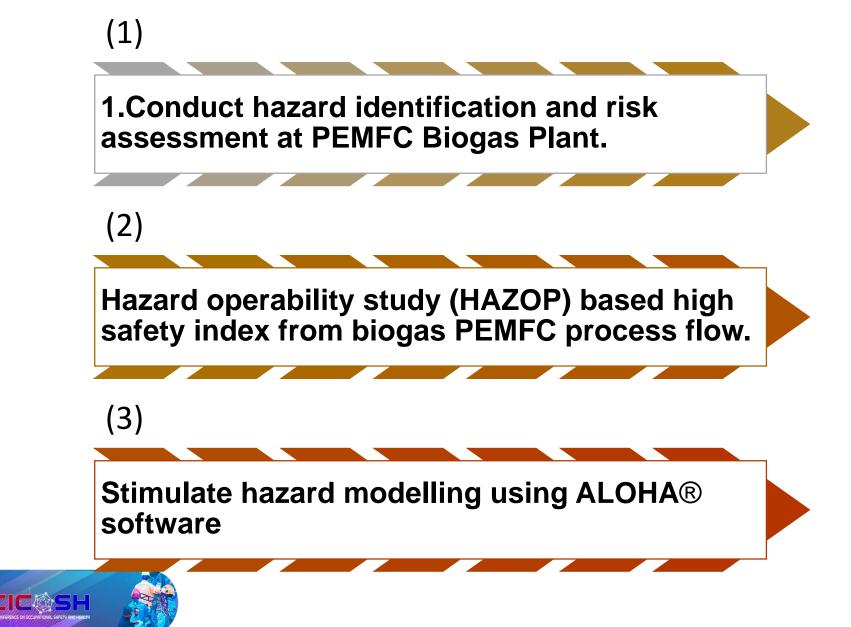
THE FUTURE OF WORK

INTRODUCTION

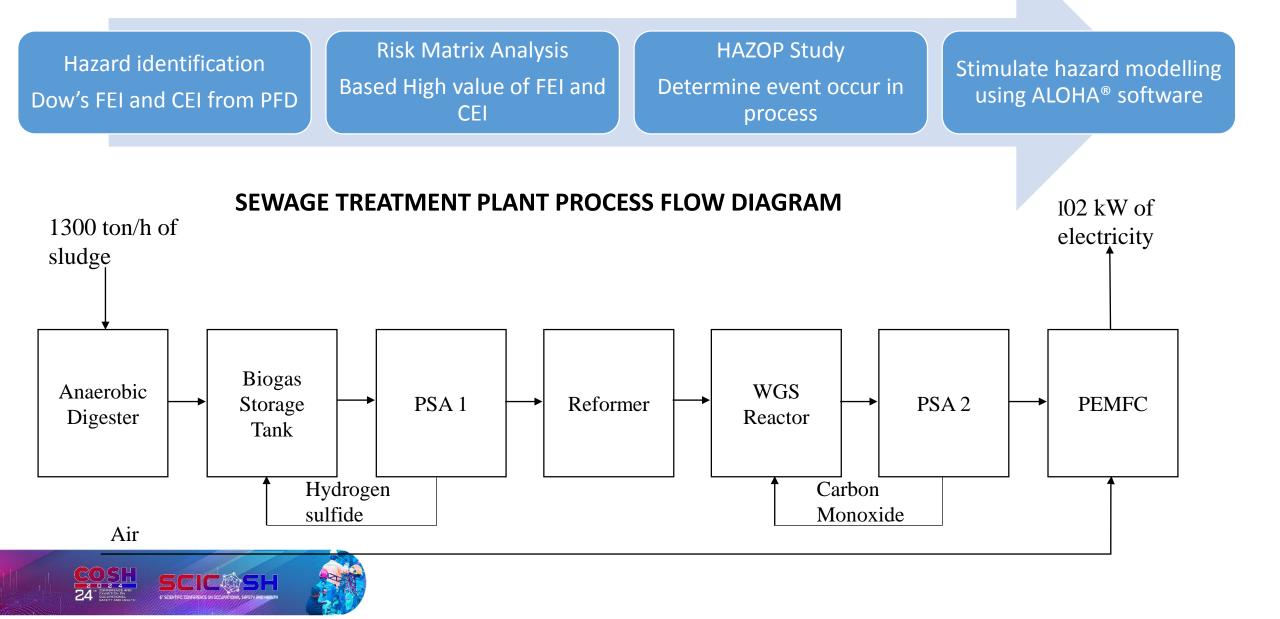
• WHY Sewage treatment plant (STP)


SCIC©SH

- i. Sustainable waste and energy supply (Atilgan et al., 2023; Frankowski & Czekała, 2023)
- Highest methane content, ranging from 60% to 70%, compared to other substrates (Jamaluddin et al., 2021).
- iii. Contribute 3-4% of global greenhouse gas emissions (Gautam & Agrawal, 2021).


PROBLEM STATEMENT

- The urgent need for clean and sustainable sources of energy has prompted the development of green technology for sewage and treatment systems worldwide. (Atilgan et al., 2023; Frankowski & Czekała, 2023)
- H₂ technology promising solution to mitigate greenhouse gas emissions (Soam & Börjesson, 2020)
- Improving Hazard identification and risk assessment management at biogas plant can mitigate accident and explosion (Trávníček, Kotek, Koutný & Vítěz 2019)



GOALS

Methodology

RESULT

HAZARD IDENTIFICATION : DOW'S FIRE EXPLOSION INDEX (FEI)

Parameters used in FEI calculation

Material	Mate rial Facto r	Operating Temperature	Operating Pressure
Methane, hydrogen sulfide, carbon monoxide, hydrogen	21	Anaerobic Tank: 30°C Storage Tank: 30°C	Anaerobic Tank: 5 bar Storage Tank: 5 bar

FEI Value	Degree Of Hazard
1-60	Light
61-96	moderate
97-127	Pertengahan
128-158	Heavy
>158	severe

Process Units	FEI Values		Degree of Hazard
Biogas Storage Tank	170		Severe
Anaerobic Digester	168	_	Severe
PEMFC	66.15		Moderate
Furnace	132.3		Heavy
WGS	90.7		Moderate
Reformer	100.8		Intermediate
PSA 2	81.9		Moderate
PSA 1	152.83		Heavy
Condenser	71.4		Moderate

- High Value Index Extra safety precautions
- High contain Flammable gas and toxic gas

RESULT

HAZARD IDENTIFICATION : DOW'S CHEMICAL EXPOSURE INDEX (CEI)

Parameters used in the CEI calculation

Material	Diameter of pipe leakage (mm)	Operating Temperature	Operating Pressure
Hydrogen sulfide	10	30°C	5 bar

H₂S ERPG values for the CEI calculation

Componen t	Molecul ar weight	ERPG- 1 (ppm)	ERPG- 2 (ppm)	ERPG- 3 (ppm)	AQ (kg/s)
Hydrogen sulfide	34.1	0.1	30	100	0.0593 1

Hazard distance Calculation for Digester tank and biogas storage tank

$$HD = 6551 \sqrt{\frac{AQ}{ERPG}}$$

4065 m	ER
129m	1
	2
	3

RPG	Hazard Distance (m)	Impact
	234 - 4065	Smell light rotten egg
	129 - 234	Severe eye irritation
	0 - 129	Cough, headache, loss of smell sense and long duration inhalation causes difficulty to breath.

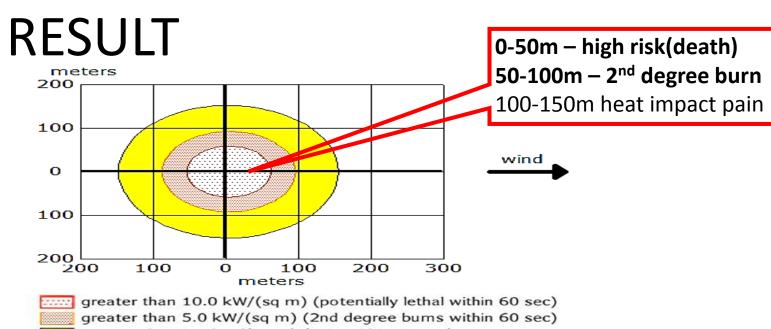
RESULT

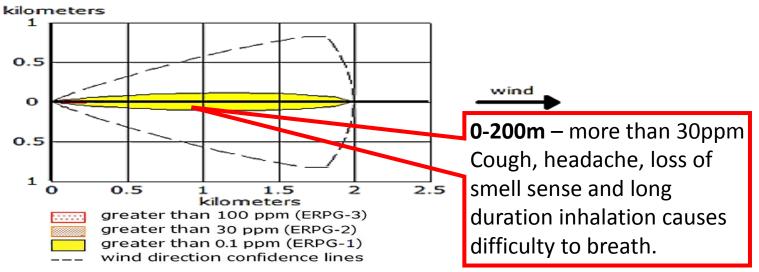
RISK LEVEL IDENTIFIED FOR ANAEROBIC DIGESTER AND STORAGE TANK FROM RMA ANALYSIS

RISK	UNIT OPERATION	PROBABILITY RATING	SEVERITY RATING	RISK VALUE	RISK LEVEL
Poisoning due to	Anaerobic digester	4	5	20	HIGH RISK
high toxicity	Storage tank	4	5	20	HIGH RISK
Explosion caused	Anaerobic digester	3	5	15	HIGH RISK
by high-pressure unit	Storage tank	4	5	20	HIGH RISK
Fire due to the presence of	Anaerobic digester	4	4	16	HIGH RISK
flammable gases	Storage tank	4	4	16	HIGH RISK
Difficulty in breathing	Anaerobic digester	2	4	8	MODERATE RISK
	Storage tank	2	4	8	MODERATE RISK

RESULT

Parameters	Guide Word	Deviation	Causes	Consequences
Flow	Low	Content Leak	Leakage in the digestion tank	Sludge decreases over time; Delay in biogas production; Release of H2S to environment
	High	Content Overpressure	Control valve failure	Sludge reaches maximum level, leading to overflow; Increased tank pressure
		Sludge Overflow	Flow exceeds limit	Overflow from tank
Temperature		Fire Risk	Gas prone to ignition	Fire hazard explosion
	High	High Environmental Temperature	External high temperature	Increased internal pressure
		Explosion Risk	High internal pressure	Digestion tank explosion
Pressure	High	High pressure in	Valve control	Tank likely to explode, biogas cannot
		tank digestion	failure	be operated.




Stimulate hazard modelling using ALOHA[®] software

PARAMETER	INFORMATION
LOCATION	KUALA LUMPUR, MALAYSIA
WIND DIRECTION	SOUTH
WIND SPEED	3.62 m/s
AIR TEMPERATURE	34°C
CLOUD COVER	5 TENTHS
STABILITY CLASS	D
RELATIVE HUMIDITY	50%

greater than 2.0 kW/(sq m) (pain within 60 sec) Thermal radiation threat zone of methane gas.

Toxic threat zone of hydrogen sulfide gas.

CONCLUSION

- 1. The study employed various methods such as Fire Explosion Index (FEI), Chemical Exposure Index (CEI), Risk Matrix Analysis (RMA), hazard modeling via ALOHA® software, to comprehensively analyze and evaluate the risks associated with the operation of biogas-fed PEMFC plants.
- The FEI analysis revealed that the anaerobic digester (FEI =168), and bio-gas storage tank (FEI =170), exhibited severe hazards, thereby signifying the highest risks within the plant. CEI analysis revealed the spread of the highest hydrogen sulphide (H₂S) concentration up to 129 meters from the anaerobic digester and storage tank location.
- 3. HAZZOP study determine parameter flow, temperature and pressure can occur the fire and dispersion of chemical.
- 4. Generating electricity by biohydrogen and PEMFC not resulting the high-risk activities.

THANK YOU

SPEAKER GUIDELINE

NOTICE TO THE PRESENTER OF THE COSH & SciCOSH

With all due respect, we are pleased to inform you some important points that need to be given attention by the presenters as follows:

i) ATTIRE

• Presenters are required to dress neatly and wear **coats/blazers** during the presentation.

ii) SLIDE PRESENTATION

- Presenters need to ensure that the **presentation slides use a minimum of 20 font sizes** to ensure that the information in the presentation slides can be seen.
- The PowerPoint used is a version of 2010 and above.
- Presenters are requested to submit final presentation slides to the NIOSH Liaison Officers
- A presentation (especially conclusion part) should be associated with COSH/ SciCOSH theme
- Should avoid all sensitive issues (e.g. race, religion, politic etc.)
- Should avoid to promote own business excessively

iii) DURING PRESENTATION

- You are given **50 minutes** to present for **workshop session** (It is highly advisable not to exceed 15-- 20 slides)
- You are given **20 minutes** to present for **paper session** (It is highly advisable not to exceed 10-15 slides)
- The question and answer session will continue for 10 minutes after the end of the presentation session.

iv) ATTENDANCE IN THE PRESENTATION HALL

• Presenters are asked to be **ready 30 minutes early** in the presentation hall.

The cooperation and willingness of Prof/Dr/Sir/Madam to comply with this matter are greatly appreciated.

Thank You.